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Abstract—A set of governing equations for nonlinear theory of spatially curved elastic beams of thin-walled
open cross section composed of straight rectangular elements is presented explicitly in the Lagrangian
form. It is shown that local deformations, i.e. in-plane distortion of the cross section may easily be taken
into account by the use of the analytical model proposed by Epstein and Murray, The essential feature
which distinguishes the present work from Epstein and Murray’s is the use of an auxiliary element when
the axial curve of beams is not located on the cross section. This enables us to select arbitrarily the axial
curve of rods. For the engineering theory of rods, the simplified governing equations for the nonlinear and
linear theories with and without local deformations are derived from the rigorous nonlinear theory by
employing the thinness assumption. It is also shown that the reduced linear theory without local
deformations agrees with the Viasov theory.

L INTRODUCTION

Thin-walled beams and beam-columns of open cross sections are apt to cause local defor-
mations, i.e. the in-plane distortions of the cross section. Since these deformations have
remarkable effects on the strength of buckling, it is of practical importance to present a more
accurate nonlinear theory of rods involving such local deformations.

The previous work on the theory of rods can be classified into the following two categories:
(1) the one-dimensional theory reduced from the three-dimensional continuum theory{2-5] and
(2) the generalized continuum theory[4, 6]. In the former case, the deformed pattern of rods is
usually expressed by means of the power-series expansion with respect to the transverse
coordinates. With this approach it is possible to include local deformations by retaining the
higher order terms of power series. However, because of the extreame increase of the number
of unknowns, such a method is very troublesome. In the latter case, it is relatively simple to
include local deformations by increasing the number of directors, provided that the appropriate
constitutive coefficients are determined. However, such a determination is not an easy task,
except for the physically meaningful directors in Epstein’s sense[11], because of the difficulty
in expressing physical relations between the deformations of directors taken arbitrarily and
those of the body.

Recently, Epstein and Murray[7] proposed an analytical model based on the use of a base
vector in each element of the cross section to develop the nonlinear theory for spatially curved
beams of thin-walled open cross sections consisting of straight rectangular elements. This
model seems to be promising in dealing with the local deformations since all the deformations
of the body can be expressed by changes of the base vector in each element. However, because
of the restriction that the axial curve must be selected on the middle line of one of the elements
of the cross section, their model is not applicable to cases in which the current axial curve of
rods is not located on an element of the cross section. These cases are examples of rods of
unsymmetric cross section, like a channel section, and rods with initial imperfection. Therefore
it is desirable to formulate the nonlinear theory of rods in which the axial curve may be selected
arbitrarily.
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In the present paper, a set of governing equations for the nonlinear theory of spatially
curved elastic beams of thin-walled open cross sections composed of straight rectangular
elements is formulated explicitly in the Lagrangian form. In this formulation, the Epstein and
Murray model is extended to include local deformations by getting rid of a certain number of
constraints. The essential feature which distinguishes the present work from Epstein and
Murray’s is the generalization of the analytical model by the use of an auxiliary element when
the axial curve is not located on the middie line of one of the straight thin rectangular elements
and is the explicit formulation in the Lagrangian form. The generalized model enables one to
take arbitrarily the axial curve of rods.

For practical applications, the simplified governing equations for the nonlinear and linear
theories with and without local deformations are reduced from the rigorous nonlinear theory by
employing the assumption of thinness. It is shown that the reduced linear theory without local
deformations agrees with Viasov theory, thus illustrating the reliability of the proposed model.
Finally, some numerical examples for the bending of elastic beams are presented.

As for tensor notations, Latin indices take the values of 1, 2, 3; whereas Greek indices a, 3.
A on the axial coordinate system x take the values of 1, 2 and the indices £, 7, { on the local
coordinate system v take 0, 1,2,.. . n.

2.EXTENDED ANALYTICAL MODEL AND ASSUMPTIONS

Let us consider a spatially curved elastic and uniform thin-walled open cross section which
is composed of any number n of straight thin rectangular elements in a Euclidian 3-space. Now
if the cross section consists of curved elements instead of straight ones, it is possible to treat it
approximately by dividing the elements into a few straight elements.

In the present formulation the analytical model is extended from the one used by Epstein
and Murray so that the axial curve can be arbitrarily selected by the use of auxiliary element
when the axial curve is not located on the middie line of one of the straight, thin rectangular
elements, with the following rules: the base vectors T, and local coordinates y® based on
elements £ in the cross section are prepared in much the same way as{7], if the axial curve C is
located on an element of the cross section, But if the axial curve is not located on an arbitrary
element of the cross section, it is necessary to prepare an auxiliary element as follows: the base
vector Ty in an auxiliary element 0 which is prepared at an arbitrary point O, on the axial curve
C is taken into the direction of an arbitrary point O, selected on the middie line of an arbitrary
element1, as shown in Fig. 1, and the local coordinate y° originated from O, which is called the
point of application of Ty increases in the direction of T, Subsequently the base vector T, in
element [ is defined at the point O, along the middle line of element I, and the local coordinate
y' with O, as its point of origin is positive in the direction of T,. Thus a set of base vectors T,
and local coordinates y® is defined at each element in the cross section in the same manner
as[7].

We suppose that the local deformations of the element itself are negligible. Therefore each
element has its straight element in the deformed state. If it is necessary to consider the
deformations of the element itself, we do so by assuming that each element has its own mode of
deformations or by increasing the number of the base vector by subdividing the element. But
since such a deformation is generally of a higher order of deformations of the body, we can
neglect it in practical application.

3. DEFORMATIONS OF THIN-WALLED OPEN CROSS SECTIONS

The coordinate systems x and y are prepared as shown in Fig. 1. The axial coordinate
system x is taken x* into the axial curve and x*(a = 1,2) into the transverse axes of the cross
section as prescribed by the base vectors A,. On the other hand, the coordinate system y is
composed of the local coordinates y° defined on the middle line of each element £ in the simply
connected cross section prescribed for the value of x* as stated before.

Denoting the position vector of the axial point O, by R(x"), the position vector R(x", x*) of
the spatial point in the undeformed cross section with respect to the system x is given in the
form
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clement O: auxiliary clement

Fig. 1. Elements and focal coordinates.
R(x*, x*) = R(x*) + x*(y)A. (). G.1)
Taking the tangent vector A; on the axial curve C defined by
As(x) = R(xX),s (3.2)

into a unit vector without losing generality and the base vectors A, into the appropriated
orthogonal unit vectors, the base vector G; at the spatial point and shifters M may be written
from [5] as follows:

Gi = MKAkr Mak = aukv Mlk = 63k + xa\yakv
M = 1 - xaq)m \yuk = cDSekcx - 83‘((1)&1 An.3 = q>3eBa AB’ (3~3)

where e, is the two-dimensional permutation symbol and ®; is given as follows:
d)l:K}COS '8, ¢2=K|Sin '8, (P}Z_’K2+ 19,3. (34)

Here K, and K, are the principal curvature and torsion of the axial curve C, respectively, and &
is an angle between the principal normal of C and the coordinate axis x'.
The position vector R(x’, y) of the spatial point with respect to vé may be expressed as

R, y9) =R+ v°Te, (£=0,1,2,...n) (3.5)
in which ¢ takes the values 0, 1, 2, 3,... n, corresponding to the local coordinates y® inclusive
of an auxiliary element. Because of the fact that the position vector R(x?, x*) with respect to
the axial coordinate system and the vector R(x’, y*) with respect to the local coordinate system
denote the position vector at the same point in the cross section, we can obtain the following
expressions from (3.1) and (3.5):

R(x%, y%) = R(x) + x*(y*)A, = R(x*) + y*T,. 3.6)
When the base vectors T and T, (£ =0,1,2,... n) are defined by
Ty =R(x%, y9).3 T, = R(x%, )., 3.7

they are expressed as



1068 H. TakaraTAKE and O, MaTstoka
T3 = G3 = M;k Ak, Tg = C:Aa (38)

from (3.1), in which C;° is the rotation tensor of element £ which expresses the relation between
T; and A, and is defined as follows:

Co=x°, (39
The rotation tensor is given in general form as
Cif =x'y=[cos b sinb; 0] (3.10)

with an angle 6, between G,(= A,) and T, as shown in Fig. 2. The inverse of (3.8) is expressed
as

A, =TA(C™N,S 3.11)
with (C™),* defined by
(C“)‘J—y—i:C“ (3.12)
« axa & - L

Substituting (3.8) into (3.6), the relations for transformation between the coordinate systems x*
and y® are obtained as

x*=y8Co ¥ =x(CHA (3.13)

Now denoting the relationship between the base vectors A, and a unit normal vector N; on
element £ which is taken in right-hand rule as shown in Fig. 2, by

N =CSA,, (3.14)
the rotation tensor C;' can be given in
Ci=[-sinf cosf, 0]=Cleys” (3.19)
with the well-known rotation tensor. Meanwhile, indicating the relation between N, and T, by
N = 4T, (3.16)
the tensors C,* and C;* may be written as
Cf = CHCP = Cled™, Cf = CC ) =(C NIClegd™  (317)
by means of C;* and (C™),* from (3.8), (3.14) and (3.15).

As the position vector (x>, y*) of the spatial point with respect to y* in the deformed state
is expressed in the foliowing form

6.,=A, e
Fig. 2. Angle ¢,.
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r(x’, y4) = Fx) + yét(xY), (3.18)
the displacement vector V of the spatial point can be reduced to
Vi3, y9) = U + yiQ(x) (3.19)

from (3.5) and (3.18), where the displacement vector U(x’) of the axial point and the displace-
ment vector £}, of the base vector T, in element £ are defined as follows:

V39 =1, y) -RGE, ¥, V) =#x)-R(), Q) =t,(x)~Tox).  (3.20)
Therefore, the differentiations of the displacement vector V with respect to x* and y* yield
Vi=U:+y 0, V=0, (3.21
Now denoting the vectors V, U, and Q, and their differentiations with respect to x* by

V= V;Ai. == ViAf, V‘3 = Vi“}Al: = Vi}\}Ai
U= U;A"': U‘-A{', U‘3 = Ui§3A“: U'§;.3Ai (3.22)
ﬂf = Qg,' A= th A.‘, 95,3 = inuSA' = Qf‘HJAi’

the displacement components V; and V' and the covariant derivatives Vi, V', Vi and Vi,
can be reduced to

Vi=Ui+y' g, Vi= U+ yenei.
Vip=Up+ ¥ Qe Vig=Up+y: Q4 (3.23)
Vige = Qg Vie = Qe,

wherein Uy, U'p, Qg and Qs are given explicitly in
* *
Up=Us- U, Ui||3 = U3+ T U*
* _ T (3.24)
Qf,'g; = ﬂéﬂ - r;;ﬂgk, 05‘33 = Qg’_:{ + F;g;ﬂg

*
and the pseudo Christoffel symbols I'Y; which are defined only on the axial curve take the
values

* * *
B= 087+ Drey, Th=-0,8° Th=0 (3.25)
from{S}.
Since the position vector r(x*, y¢) in the deformed state may be written as
r(x’, y5) = R(x%, y) + U() + ¥R (x) (3.26)

from (3.18) and (3.20), the base vectors t; and t, with respect to the y system in the deformed
state are

=1 =Ti+Us+y s, te=r,=T,+Q, (3.27)
Meanwhile, from (3.3) and (3.8), the differentiations of the base vectors T, become
T§,3 = Cga Aa,3 = Cg"‘b;e&, AB. (328)

4. STRAIN-DISPLACEMENT RELATIONS
The Cauchy-Green strain tensors are defined as

1 1 1
E;53 = 5(‘33 - Ts), Esg = §(t3§ - T3§)’ Eﬁn = i(téu - T&t) 4.1
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with respect to the y system, in which the physical meaning of strain tensors E;, is the
transverse normal strain of element ¢ itself, corresponding to the stress tensor s%, as shown in
Fig. 3, for £ = n and is the in-plane shearing strain between elements ¢ and 1 for €% n. Wherein
one has to realize that the strain tensors defined in (4.1) imply mean strains.

Employing (3.3), (3.8) and (3.25) in the above equations, the strain distributions with respect
to the y system may be obtained as

23 §)] (943 (3]

(n ™ .
Es;= Ex+ Y Epe+ YY" Enignr Ese = Exg+¥"Ezgy s Eep = Egp (4.2)

where the strain measures are defined as follows:

[8}] 1 i
Ew=Upt;UpUi

)]

Esse = 0

W R
Epgn = (Cf,' + iﬂffl\})ﬂnilh {4.3)

(2) .
E3§ == %(QE3+ UGH]C; + U;[!]Q&l)

(2}

1 o i @ i
Ey = 5@1&8& F QoG + Q)

)] 1 .
EE"] = '2‘(C§aﬂna + Cnuﬂfq + Qgg(lnl).

S, THE PRINCIPLE OF VIRTUAL WORK

Let us derive the governing equations of thin-walled open cross sections through the principle
of virtual work. Since the strain tensors given in (4.2) have been defined as the mean strains which
neglect its thickness-wise variation, we need to consider the effect of this variation by either
assuming the thickness-wise variation of strains or adding the St. Venant torsional moment to the
internal work. In the present paper the latter has been chosen for its simplicity as explained in{7].

The St. Venant torsional moment T¢ of an element £ is given by

T = Glw;, (no sum on §) (5.1

ot
,,/_ﬂrv /, . : .
;,/ f’/‘} y

Fig. 3. The physical meaning of 5",
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in which the torsional constant, J;, of the element £ is
1
Ie= [ T dy' 52

and the change in specific twist, w,, of the element ¢ is expressed in
e = ngtg,g," Nng,} = C;{tﬂt&; - T,,Tg,g] (HO sum on f) (53)

by means of the unit vector Ny(n;) normal to the base vector T,(t;) in the element ¢ from{7].
Using (3.8), (3.15), (3.22) and (3.28), the above equation becomes

W = C{A[e)m Q;{u} + (C—')Q“C{@;;ewﬁ"“ewﬂny + (Cﬂg)ane‘\35aﬁﬂﬂiﬂf"§3}, (5.4)

Hence, the internal virtual work done by the St. Venant torsional moment for thin-walled open
¢ross sections may be written as

L‘ Té8w, dx’ = f;{g (605 C T ew +(C). x50 ]
+ 2} [0/(C)AC, Tes (C, ey + il ', (59
The internal virtual work W, yields
W, = [ SPSE,p dV = L f J' [s%8Es + 256 Ese + s8] M dS dx’ + J: : T, dx’

! M 3 D) . . @ ) -0 s
= L [N¥8Ey; + M@SEss + B8 Easg, + 2N Y3 Ese + 2M ™8 Esg + NS E,, + T%500;) dx
(5.6)

by means of the Kirchhoff stress tensor s, where the stress resultants and stress couples are
defined as follows:

N J' BM dS = 5_‘, $M dS©

(4]

[sBngdS Zj sPyEM dS©
@

Is”ygy”MdS ZJ' 2y M dSY
©

5.7

N¥ = ] s¥M dS=| s*MdS®  (for ¢ real elements)
®)

M™ = [ s¥y"MdS=| s¥y"M dS®  (for ¢ real elements)
&)

Ner= [ senmas = 2 [ somase,
®)

wherein since the shearing stress s* is defined in an element ¢ only and disappears in the other
elements, the total integral in the cross section is reduced to the integral in the element ¢ alone.
Meanwhile, the stress tensor s is the component of the stress vector S* in the element £ with
respect to the base vector T, in an element 7, as shown in Fig. 3. Employing (4.3) into (5.6), the
internal virtual work can be expressed as
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(h, ; @ . o, (2)gi (3){ 3
8W, = [A']0U; +[A¥148Q “‘f [A'R8U, + (A%~ A¥)80g] dx (5.8)
0
where
(1 . . _ . ) _ « .
A'= NP8, + Ulp+ N¥(C/ + Q) + M(CAY, + Q)

2y - , , - . ; - ; .
A§| = M§3(83| + U‘“})‘*’ M&-y,(cnn 4+ Q"I)+ B.ﬁn(cna‘yax +Qn'ﬂ1)

+878,5C T ey +(C 7)) enpd ™ 0] (5.9)
3y - . . - . . — . .
A¥ = N¥*(5, + U'py+ NE”(C,,‘ +Q Y+ MY¥(CV, + Qo)
+ 2‘ Sii(C_l)fc,,AT"eABS“B[C,,“QJ;em + Qm'"ﬂ. (59)
&=
Meanwhile, the external virtual work W, may be written as
*
5W2=J (p— )6V dv+f T5V dS, (5.10)
v Sy

in which p(x’, y%) and o(x?, y%) are the external force and acceleration per unit area in the
undeformed body, respectively, and S, is the boundary surface at the end points where the
* *

stress vectors T are prescribed. Now denoting the components of p, ¢ and T with respect to the
base vector A; by

* *
p=p'A, c=c'A, T=TA (5.11)
and using (3.19), we hold that
SR - % *
W, = f [p' ~ U+ (m* — b¥)8Q4) dx” + [N'SU; + M¥8Q4] 3204 (5.12)
0

where

pf-—fP"Mds:E P'M ds¥
=11

¢'= f C'MdS= C'M dS%
(=1

it = [ Py dS=;J Py*M dS®©
= Jo

. _ n ) (5.13)
5é = [ CyMas=3 [ clyMds®
=1 J{)
* £ n *
N‘z[’I‘MdSr- 2 f T'M 4S9
=1 Jw
* * n *
ME = J T'yM dS = T'y*M dS©.
Sido
Employing (5.8) and (5.12) into the principle of virtual work
W, - 6W,=0 5.14)

gives the equations of motion and the boundary conditions as follows:
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The equations of motion:
8U: N8y + Ulp) + N*(C{ + Q)+ ME(CAY, + Qlp+p' = ¢ (5.15)

8Q: (MO8, + U'p) + M*(C, + Q")+ BS(C, "V, + Q)
+8"8,5C4 T *{er; + (C ") "ered P Qilln = N*(85 + U'p) - N¥U(C,) +Q.,)

= M™(C, o0, + Q) - 21 8UCT)EC, TTe,gdP{C, Dsey, + Qs + W& = b¥. (5.16)
il = -

The boundary conditions: at x*>= |

* *
N'= NP8, + Ui+ N*¥(C/ + Q) + MO(CoY, + Qp) or U = U, (5.17)
* o . . . _ . . _ . . *
M8 = M5, + Up) +M*(C, +Q,) + B™(C,° ¥, + Qip) or Qi = O
+ 878,55\ T* ey +(C ™), .18
* *
If the prescribed stress resultants N' and stress couples M at x=0 are chosen in the

* *
opposite direction to the positive direction of displacements U,, namely, conversely N' and M*¥
at x>=1, as

* *

N - -N
* * at x>=0, (5.19)
M¥ > - M€

then the boundary conditions at x* = 0 are reduced to (5.17) and (5.18).

Although the stress resultants and stress couples given in (5.7) are expressed in the forms
with respect to the local coordinate system, namely, the micro forms except for N*, but in the
theory of rods the macroscopic expressions with respect to the axial coordinate system x are
generally employed. Now defining the macroscopic stress resultants and the macroscopic stress

couples in the bivector form as

N = f s¥CFM dS = U s*M ds‘f’]c;
(

£€)

M= f sPx°MdS=3 f sPx°M dS®
=140

M# = f s¥CoxPM dS = [ f( s*xPM dS“’]C{’ (5.20)

3}

B = f sPx"xPM dS =Y f sPx°x?M dS©
Filo

N = [soceeomas =3 [ smasocecy,
{=1JQ)

the relations between the micro- and macro-expressions for stress resultants and stress couples
may be obtained as follows:

N = N_3§C§a N¥ = N!a(c—l)ag
N°® = N&CseC? N = N*(CT)HC™),"
M =My M®=M=(CT)f - (5.21)
MP* = M™CsCf  M™=MP(CT)HCTY,
B® = B&CoC,P B = B*(C™)HC ™"

The stress couples M; in the dual vector used generally in rods are expressed as
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M, = M“e,; + Té;, (5.22)

wherein T is the St. Venant torsional moment given by
T=3% T (5.23)
£

Hence, from (5.22), the bending moments M, which are defined the clockwise rotation with

respect to x® as the positive are
Mﬁ = M(ﬂe&, = MUC:eBa (5-24)

and the torsional moment M; is
My=M%ep +T = MgC;'CgBeﬁa +T. (5.25)

Similarly, the external moments in the micro-form given in (5.13) are concerned with the
macroscopic expressions by

m* =miC m®=m*(C™,}
b™ =bfCS b =h™(C), (5.26)
* * ook
Mui — Mglch Mfl — Mm(c \)ug
and may be related to the dual forms as follows:
m; = m®e,; = m¥Ce,
f: = b*menfj = bilcfaeaij (5.27)
Mj = M"ie(,i; = Mficgueai,;

6. CONSTITUTIVE EQUATIONS
The Kirchhoff stress tensors s* may be expressed as

sab — CadeEcd — C(IHSSEH + 2Cab3€E35 + Cabg“-nEfn (61)
with the Cauchy-Green strain tensors in the absence of a prescribed steady temperature field.

For an isotropic body, the elastic tensors C**“ are given in

Cobed = G[T“"T"“ £ THT T“"T“d] 6.2)
with the metric tensor T in an element &

Hence, substituting (6.1) into (5.7), the constitutive equations are given in Table 1 with the
constants J defined as follows:

r ~ -
(j)abcd 1
@)
]abcdé yf
({)ubcdg abed E,m )
q g =Ic Yy M ds®. 6.3)
[£4]
Favedens viyTy?
(5) abcdéndv yéy ny d>y v
L J L



The elastic theory of thin-walled open cross sections with local deformations 10735

Table 1. Constitutive equations

(1) (1) (1) 2 (2) Nz
Ess Esse Easen 1 B Esin Een
i
nol(g (c (Chae s (z c
R 333 |(thszse  |(Chassen  |,'ihsse |,Chssen | Chsen
no | gk (z (g €4 (t s
Wi i Shizse | (Mhassce | (Mhassens |,"%sses |,(Shssene | Chaens
{ !
6v_ czl{ (jésssq,v (sézssgw (jfzzssgnm r 3%335,@ 2(3§335n¢v | jésﬁnw )
(— (t (¢} RO (c K
gt o sas Thesse | MPhossen |,Csese |, Chesen | Shen
I
[
(z (t (el .. ‘e ( X
s | Shease (Thessry |Chezsens |, Chusee |, SBusene | Shrene
( (x) ‘ oy (t) E
v0_ LE,( Hess | Clessy | Slessen ‘Z'f,vm o Sesen | Fleen
by |

(for z real elements)

7. SIMPLIFIEDNONLINEAR THEORIES

The derived nonlinear governing equations for spatially curved beams of thin-walled open

cross sections are summarized as follows: the strain-displacement relations (4.3) for strain
@ MW o o ™
measures Es;, Es,, Eiyse, Ejp Es and Eg,, the equations of motion (5.15) and (5.16) for

displacement components U; and {1, the constitutive equations Table 1 for stress resultants and
stress couples N, M¢*, B*, N*, M* and N*, the boundary conditions (5.17) and (5.18).
The purpose of the present section is to discuss the usual allowable classical hypotheses of
rods by means of the present analytical model and to present the approximations of the derived
governing equations by means of these constraints.
For classical constraints, we can hold the following assumptions about the present model:
(1) The transverse normal strains for each element are ignored, i.e.

®
E,, =0 (for (=n). 7.1

(2) The in-plane shear deformations between elements are ignored, i.e.
&)
E. =0 (for £ 7). 7.2

(3) The perpendicularity of each element is conserved, namely, the transverse shear
deformations are ignored, i.e.

@
Ey=0. (7.3)
(4) Warping in each element is ignored, i.e.

Q= 0. (7.4)

Among these constraints, combining assumptions (1) and (2) implies that there is no change of
cross sectional shape, namely, that there is an absence of local deformation, and it is considered
to be the most universal hypothesis of rods. But although thin-walled open cross sections
produce local deformations unlike solid sections, it is necessary to present a more accurate
theory of rods involving local deformations.

SS Vol. 19. No. 12D
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The assumption based on a combination of (1)—(4) is the Bernoulli-Euler hypothesis which is
used in the elementary beam theory. A hypothesis which includes all but (4) of the Bernoulli-
Euler hypothesis is used in the Vlasov theory. The Timoshenko beam theory employs the mean
value for the transverse shear deformation instead of excluding (3) alone from the above
constraints, but only the theory except (3) is more exact than the Timoshenko beam theory because
it has a lot of freedom in the transverse shear deformation.

Meanwhile, although the thin-wall of the body has been already employed in the for-
mulation, we may hold the thinness assumption defined as follows:

(5) The size of the cross section is smaller as compared to the radit of curvature and torsion
of the axial curve, i.e.

x*R <1 or x*®; <1. (7.5)

This assumption can be used independent of the above-mentioned classical constraints. From (7.5)
we can be approximate as follows:

Mf=85 M=1, (7.6)
and the governing equations can be simplified as follows:

7.1 Approximation 1

Let us try to present the approximate equations under the thinness assumption (7.5).

(1) Strain-displacement relations. The underlined terms of (4.3) are negligible.

(2) Equations of motion and boundary conditions. The equations of motion and the
mechanical boundary conditions are negligible in the underlined terms of (5.15)~(5.18).

(3) Constitutive equations. It follows from (7.6) that

T3 = A3, T = §* (77)

and
Cabcd — G[Bacshd+80d6bc +%6ab6cd] (78)

Hence, the Kirchhoff stress tensors s*°, s* and s are reduced to

§7=(2G+ M) En+A6°"E,,
s% = 2G8*E,, (1.9)

§6 = ASFEs; + (2G8%8™ + A65"6°°)E .

Employing the above stress-strain relations into (5.7), we may obtain the constitutive equations
of simplified Table 1. But, in view of the practical use, it is necessary to present further simpler
constitutive equations than the equations given by the above-mentioned method. Therefore we
can use the following engineering stress—strain relations which are accurate enough for practical
usage:

833: EE33
s%=2G Es (7.10)
sﬁ’ﬂ =2G Ef"l

The simplified expression for s in the above equations is obtained by assuming that the
Poisson’s ratio is zero. The reduced simplified constitutive equations are given in

3 [¢)] 1) [$)]
N = E[AE33+I§E33§+ If"lE:B{"]
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~ 53 é(” §¢u’ Eﬂd’(“
M® = E[I E33 +1 Eg;é +1 EJan]

_ () (1) (1)
B* = E[I*Ey+ [*"Eny + I E s, ]

- o)
N** =2GAE,, (7.11)

_, O OO
N f = 2G[AE1§ + IRER,J

) 0o © o (no sum on ¢ and for { real elements)
M®% =2G[I*E;;+ 1 ™E;,],

where the constants are defined as follows:

te] &)

A 1 A A

@ It

It ye It I

© @ n ©

et = f( ) yyr [ 4SOad | e b=3 e .12)
) ¢ ) @

I€n¢ ygyy,yd, Iew [Em#

;'{ v ygy'qyéyv I§7I¢” }Q’N’W

7.2 Approximation 2

In the preceding clause the simplified forms for the nonlinear theory with local deformations
have been represented by means of the thinness assumption. In order to obtain the further
simplified governing equations, we suppose that local deformations are negligible, i.e. the cross
section does not change its shape, in addition to the thinness assumption. This assumption may
be expressed by (7.1) and (7.2). Hence it follows that the displacement components {1 must
satisfy the following expression:

CEQpe + C* Qe + 00, =0 (for £ =1 and £% 1), (7.13)

e
and that the stress resultants N corresponding to the strain measures E,, may be put as

N& =0 (7.14)

Hence, the set of governing equations stated in Section 7.1 can be simplified in the expressions
® -
of omitted terms involving the strains E,, and stresses N7, which are indicated as doubly-

underlined terms.

8. LINEAR THEORY
Although the linear theory can be easily presented from linearizing the nonlinear governing
equations, the present Chapter states the linear theory corresponding to the simplified nonlinear
theories.

8.1 Linear theory 1
The linear theory under the thinness assumption can be obtained from Section 7.1 as

follows:
(1) Strain-displacement relations. It follows from (4.3) that
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() §)

Ey= Uzuz» E}zg = Qg}uz, (8.1
2) . . (2) . .

Es =3[Qe+ UgpCel, Esen = 3Q0anCe, (8.2)
3 |

EE*: =3 [CéuQnu + CnaQ’Ea]‘ (8.3)

The strain distributions are reduced to

m Ko
Ey= Eyy+ v Esy

2) 2)

E}ﬁ = E3§ + yﬂE3§" (84)
&)

Ef" = Efn‘

Since it is sufficient to consider only the stress resultants and stress couples corresponding to

the strain measures given in (8.1)~(8.3), the stress couples of high order, B*", can be ignored.

(2) Equations of motion, boundary conditions, and constitutive equations. From (5.15) to
(5.18), the equations of motion become

8U NP8, + N*C/lp+p' = ¢ (8.5)

80 [MO85" + MEC, +878,5C4 TP,y — N8y ~ NOC,/ + ¥ = b¢ (8.6)

and the boundary conditions are

* *
. N'= NP8 + N*C/ Lo U=U (8.7)
M = M®8,'+ MC, + 818,5C,* T, or Q=0 (8.8)
The constitutive equations are given from (7.11) as follows:
48] (48}
N* = E[AEy+ I*Eyy,]
_ () ()
A’fd’3 = E[I‘bEﬁ + Iéd’Eg;g]
- o)
Nud) — ZGAEU¢ (89)

()2} ()

N3L = ZG[AE3g + I "E3§n]

(no sum on ¢ and for { real elements)
_ OO 0.
M® =2G[ I *Ey + 1™ Ey,]

8.2 Linear theory 2

Ignoring local deformations in addition to the thinness assumption, we can obtain the linear
theory corresponding to the nonlinear theory given in Section 7.2. The derived linear theory
corresponds to the well-known classical theory.

It follows that, if we ignore local deformations, the displacement components (), must
satisfy the following constraints:

Cl0,, +C 0 =0 (for £ = nand £% ). (8.10)

Hence, the governing equations for the present linear theory may be expressed in the forms of
the omitted underlined terms in the preceding results.
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9. EXAMPLES

In order to examine the derived theory, the problems in the twisting of straight cantilevers
with a doubly symmetric H section and with a channel section, which are composed of an
elastic and isotropic material without initial imperfections in Sections 9.1 and 9.2, respectively,
are solved by the linear theory without local deformations derived in Section 8.2. Further in
Section 9.3 we state the numerical example of the derived nonlinear theory on the elastic beam
under uniform bending. These examples are a useful means of showing the reliability of a given
model.

9.1 Torsion of a doubly symmetric H section .

The cantilever is subjected to twisting moment, M, on the axial point at x* = I, as shown in
Fig. 4, and its warping is restricted on the fixed end at x*>= 0. In the constraint of warping at
x*=1, case 1 restricts warping while case 2 allows it. Since there is the problem of torsion, we
may consider {); only for displacement components and the needed boundary conditions
become

*
My=M; at x’=I

Q=0 at x’=1| 9.1)
Qz=0 at x’=1 forcasel

MP=0 at x’=1 forcase2.

For straight beams without initial imperfections, the covariant derivatives are reduced to the
partial derivatives.

(1) Coordinate systems and base vectors. Choosing the axial coordinate axes x' to be the
principal centroidal axes, as shown in Fig. 4, the auxiliary element “0”’ becomes unnecessary.
The base vectors T,, T, and T; and local coordinates y', y* and y* for each element are shown
in Fig. 5. The values of y* are given in Fig. 6.

(2) Rotation tensors C;".

element 1 8'=270° C*=(C7),'=-6&"
element 2 6°=0°  C;"(C7)."= 8" 9.2)
element 3 8°=90° Cy*=(C"H.}2=6"

{3) Constraints by ignoring local deformations. Based on the neglect of local deformations,
the displacements (), must satisfy (8.10) as follows:

3) 3 3) )] 3) (6]
Ey=E;p=E;3=En=En=Ep=0 9.3)

Solving (9.3) under (9.2), the torsion of the cross section is, as is well-known, expressed by the
angle of torsion, {1,;, only. Therefore

1 Rigid for case 1
‘?n: Free for case 2
1
7 / Cod,
A X3T XZT 3
A = — e o - - h -
s M3 + KIS
2 x
He— 1 >} et
3 Tty
§H~:':"”’—r—="':'m-—":‘:—t—:_-_i-.———n:“{:: - —
v

Fig. 4. The twisting of a cantilever beam.
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A

T
L et
2 y” 2
h @B,__..%x
o
),I
U -1

Fig. 5. Local base vectors T, and local coordinates v,

[+ v et
/ 2 s £
b +
5 b h
° U O b
o 2 /3
Fig. 6. The values of local coordinates v%.
1y 0 (i
Qgi = 0 Qs
—n 0 O

(4) Strain-displacement relations. It follows from (8.1) and (8.2) that

1 {2}

i
Eyne=Qps  Eyp =3y

(93] Q)
=1 =1 L
E3l'r) - ZQnEsE E}Zn - Zinﬂ E'ﬂn - ZQn2’3~

(5) Equilibrium equations for warping (1. From (8.6), we hold that
80 MP,-N*¥=0. (£=1,2,3).
(6) Constitutive equations. From the simplified expression of (8.9), we have

. )
M§3 = E IE£Q§3,3 (f = 1, 3)

hz mn @ hlm

M23: E(ZA‘*‘ 122+-4“A>Q23,3

=3 &) h
N¥%=GA (n§3+ 3 922,3) =13

)

N32 = GAQ23.
(7) Relations between Q5 and (). The substitution of (5.7) into (9.6) is

W, (1 h
EI'Q,5-GA {Qn‘l‘ 5922»3} =0

2 23 @ )
E [%— A+ %— A+ IzzJﬂza,u —GAOx»=0

@ &) h
EI%Q5,5—- GA [933 + 2 ﬂzm] =0.

9.4

(9.5)

(9.6)

9.7

9.8

(9.9

(9.10)

Since the coefficients of the differential equations (9.8) and (9.10) have the same values for

f; = 1y, it can be concluded that
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Q=0 (9.11)

Hence, {)5,; is obtained from (9.8) as

4}

2 11
Dy = " [E—{ir D3 9:3}- 9.12)
GA

Meanwhile, the differential equation {9.9) for {},; becomes
023 = 0 (9 13)
under the present boundary conditions.
(8) Equilibrium equation for warping. Using (5.25), the boundary condition for the torsional
moment M; is
My=-M"+ M3+ M?-M?+T. 9.14)
From the constitutive equations the torsional moments due to warping may be written as

0
M'=-M%=- g%& [Q,; + -;21 022,3] (All others are zero). 9.15)

Meanwhile, the St. Venant torsional moment T is given by
T = GJQ22,3. (916)

The above equation is also obtained by substituting the expression linearized (5.4) for the angle
of rotation, w, of element ¢ into (5.23). Hence, employing (3.15) and (9.16) into (9.14), the
torsional moment M; is reduced to

) ()\)h2
M3 = GAhﬂ.13+ G {"‘"2"“ + J] 922,3. (917)

Using (9.12) into (9.17), the equilibrium equation for warping becomes

) M;h ,
Qup—-pQp= G2 p 9.18)
with
2 GI
P = ECws (9'19)
where C, is defined as
Tn (w2 tb’h? | b
C,,,=—(——A+J)=———+——. .
fX 2 24 12 ©.20

For usual structural members, since the underlined term in (9.20) is smaller in comparison than
the first term, we can usually neglect the second term and the reduced result agrees with the
well-known warping torsion stiffness constant.
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(9) Solutions of the warping parameter, €)1, and the angle of torsion, Q. The general
solution of {1,; may be given in

M;h

GI 2 [C, cosh px’+ C, sinh px® - 1] 9.21)

Q3=

from (9.18), and the angle of twist per unit length, {).,,3, yields

2 2
Qa3 = M, [C;( by _ 1> coshpx’+ C, ( b _ l) sinh px* + 1] 9.22)
GJ 12C, 12C,

by substituting (9.21) into (9.12). For usual members, since the underlined terms in the above
equation are negligible when compared to unit, we can approximate (9.22) as follows:

Qapp3 =~ %4; [C, cosh px* + C, sinh px’* - 1]. (9.23)
Therefore, the warping parameter is expressed approximately as
h
Qz=~ 3 Qa3 (9.24)

from (9.21) and (9.23). Namely, it implies that the parameter (},; referred to the local
coordinates selected as shown in Fig. 5 takes the negative value. From (9.13) and (9.24),
warping at y' = b/2 in the bottom flange takes the value

{9.25)

| S

b bh
QHEZ‘TQQ»J at y'=

As compared to the Vlasov theory, (9.23) and (9.25) agree with the equations for torsion and
warping, respectively, when the St. Venant warping function ¢, is given as shown in Fig. 7.
(10) Stresses. The normal stress s> is given in

(1)

s = EE3; = EvEq. (9.26)
Explicitly,
sP = Ey'Q, for top flange
s¥=0 for web (9.27)

s¥ = Ey’Qy3,, = Ev’Qys.,  for bottom flange.
Similarly, the shearing stresses s> due to warping take the form

s'=G [QB + % Qz“_),]] for top flange

$32=0 for web {9.28)

s¥=G [933 + 2922,3] for bottom flange

A S
e
B

) |

Fig. 7. St. Venant warping function.
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from (9.7). Using (9.8), the above equation may be rewritten as

[L}] (1)

EIY EI'h
st = 5P = 5= Qi =~ —— Qe
A 2A

wherein the distribution of shearing stress s*' is expressed as

$ = k87 = 1.5 5%

1083

(9.29)

(9.30)

by means of the well-known coefficient . At the end points it takes s°' = 0. The total shearing
stress can be obtained as the sum of the shearing stress due to the St. Venant's torsion and (9.28) or

(9.29).

9.2 Torsion of a channel section

Let us consider twisting of a cantilever with a channel section, as shown in Fig. 8, under the

boundary condition which is commeon with H section.

(1) Coordinate systems and base vectors. Since the axial coordinate system x' is chosen on
a straight line which is not in the cross section, as shown in Fig. 9, the local coordinate system
requires an auxiliary element 0. It is shown that the local coordinate axes y* and its values are

given in Fig. 9 and Fig. 10, respectively.

™ stk
/ <
% U T 2
/ "“>>“9‘3 b >
/] b

kb3
A i
/] >

Fig. 8. The twisting of a cantilever beam.

T, N

\

= b —

Fig. 9. Local base vectors T; and local coordinates Ve

R b

=] 1

[\ 1

¥ ¥ ¥ N

ta
v

Fig. 10. The values of local coordinates v%,
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(2) Rotation tensors C;°.
element 0 6°=270°

0 —1}
element 1 6'=0° 1 0
element 2 °=90° C~=[0 1 } (£=0,1,2,3) (9.31)
element 3 6°=90° 0 1.

(3) Constraints from the absence of local deformations. Substituting (8.3) into the following
constraints

3 3) 3) 3) 3) 3) (3)

Ew=E; = Ep=E;=Eqp=Ep,=E;3=90 (9.32)
gives
| Qu 0 Qg
0 Qo Qi
Qo 0 Qy | (9.33)
Qo 0 Qg

(4) Strain-displacement relations. It follows that

(4} ) | (3) 1 o
E}}g = 953,3» E}g =3 Qfa, Ew\ =2 Qna73C§ . (9.34)
(5) Constitutive equations.

(&)}
= GA[QU + dﬂom]

)

= GA[Qzﬁ%Qm,s]

3)

-GA [n h nm,;]

_ (n
MO3 =EA dZQ()3,3 (935)

_ ) 3
" [Inn,3+bhAQm b"mm]

o - [ @ pre ]

AQpst 3 Ay

_ 3) 2

#0 =B [0 A s A 0]
where

2D gz @ 3

I= 12A~|L—-(A+A) (9.36)

(6) Equilibrium equations for warping Q.

8903: @03,3:0_
80n: MP,-N%=0 (¢=1,2,3). 9.37)

) 3)
Substituting (9.35) into (9.37) and noticing that A = A is, we obtain

Q]} = - (l'_ﬂ. (938)
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Therefore, the equilibrium equations (9.37) are reduced to

903,33 =0 (9~39)
bh @ o
E(IQH,B'I'T A 023,33) ~GAQ;+d Qo) =0 (9.40)
h b2 h
E (bT Qi t+ 3 sz;) -G (ﬂzs + 3 Qo1,3)=0. 9.41)

Solving (9.39) under the boundary condition (9.1) is
qu = 0 (942)

(7} An equation for torsional moment. From (9.1) and (5.26), tie torsional moment M, is
obtained by

Mi=M"-M'"+ M2+ M"+T. (9.43)

Employing the following torsional moments due to warping

_ m
Mm = GAd[Q]3+ dﬂm,:;]

var: 713 @ h h
M‘=M '=GA5[923+‘§QOM] 9.44)
and the St. Venant torsional moment
T = GJ Qo3 (9.45)
into the above equation yields
) @ h
M.= Gl dA@:+ d0u) + hA( O+ o) [ + G0 (9.46)

(8) Solutions of warping parameters, (3 and Q,, and the angle of torsion, Q. The
unknowns, {15, {1,; and {),,, are given by solving (9.40), (9.41) and (9.46), but it is impossible to
solve these easily because of the coupled forms in the equations.

Then, in order to convert these field equations into uncoupied forms, let us suppose that the
distance, d, is a constant value satisfying the following expression:

QU + de,J = 0 (947)
Employing (9.47) into (9.40), we have
bh @
Qo =-— o7 A, (9.48) -

Substituting the above equation into (9.41) gives

,
211 WA LE
Qm,;:H[(g—_S‘I")b 6923,33"023 . (9-49)

Therefore, using (9.49) in (9.46), the equation for )y, is reduced to

Qo33 —p 2923 = é’% (9.50)



1086 H. Takasatakt and () MATSUOK A

with
I
p’= % RE) 2 9.51)
(R
2 3 81
2J
The general solution of (9.50) is
M .
ﬂzgxzﬁg—[a cosh px*+ C, sinh px* - 1]. {9.53)
Hence, from (9.49) and (9.53), Q,,; is given as
M3 3 . 3
Qoip3 = reli [C1Cxcosh px” + C,Cy sinh px* + 1], (9.54)
where C, is defined as
2y
%’ A . h2 2)
C;Z"—’;’[a)———-“:“l (smce ‘2—A>1>. (9.55)
(Ga+s ) |
Therefore,
M3 3 - 3
Qo= el [ C,cosh px”— Cysinh px’ + 1). {9.56)
By using (9.54) or (9.56) into (9.47), (1 is
M3 3 H 3
Q= 7 d[Cycosh px” + Cysinh px° - 1]. (9.57)

Since (13, 43,3 and 3 given here are presented under the constant distance, d, selected as
satisfying (9.47) in order to uncouple the field equations, let us try to find such a “d”. Based on
the condition that the expression for (5,3, given from (9.48) must agree with the one from
(9.57), we have

2@

2 2 |
b (h bh 42-A>J). (9.58)

dz“ﬁ(?A’L!):"HA (since

The reduced expression agrees with the shear center. Hence it reconfirms that the shear center
plays an effective part in uncoupling the torsional rotation and warping in the linear theory
without local deformations.

9.3 Uniform bending of a doubly symmetric H section

For the numerical example of the derived noniinear field equations, we show that the simple
problem of an elastic beam consisting of a doubly symmetric uniform H section, with the initial
imperfection, is subject to uniform bending at both end-moments. The numerical method
employs the finite difference method, which divides the beam into 20 equal parts. Also it is
assumed that the initial imperfection has a sinusoidal rotation about the centroidal axis x’.
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Hence

mX

!

mX

8= 0, + 8 sin — = B, sin l (6, =0 in the present state).

Figure 11 is the moment-displacement relations of the numerical results for both the further
simplified nonlinear field equation without local deformations which was derived from Section
7.2 and the corresponding linear theory in Section 8.2. It follows that the vertical deflection, u,,
shows smaller nonlinearity in an elastic beam regardless of initial rotations but that, for the
lateral displacement, u,, the smaller the initial rotation is as compared with the pertect beam,
the more nonlinearity the beam takes. For practical beams, however, the moment-displacement
relations may show a tendency to soften in order to decrease the stiffness of the cross section
because of plasticity.

The vertical deflection, u,, at the midspan in the linear theory for the perfect beam agrees
with the elementary beam theory and it follows that the elementary beam theory shows
relatively good approximation for the vertical displacement of the linear and nonlinear elastic
theories with comparatively small initial rotations. Also it is shown from the numerical results
involving local deformations for the same problem that local deformations have negligible order
in elastic beams as compared with the vertical and lateral displacements, because the stress
exceeds the yield stress locally in local deformations.

10. CONCLUSIONS

A set of governing equations for the large displacement theory of spatially curved elastic
beams of uniform thin-walled open cross sections consisting of straight rectangular elements
has been presented explicitly in the Lagrangian form. In the present paper Epstein and
Murray’s analytical model has been extended so as to choose arbitrarily the axial curve of
beams by the use of an auxiliary element when the axial curve is not located on the middle line
of one of the straight rectangular elements. And it has been shown that Epstein and Murray's
model can easily be extended to include local deformations, i.e. in-plane distortions of the cross
section by getting rid of a certain number of constraints. Further, the simplified governing
equations for the nonlinear and linear theories with and without local deformations have been
derived from the governing equation by means of the thinness assumption. It has been shown,
in order to illustrate the reliability of the proposed model, that the reduced linear theory without
local deformations which is subject to the thinness assumption agrees with Viasov’'s linear
theory.

The general theory involving the local rotation for thin-walled open cross sections has been
systematically formulated on the basis of the extended analytical model. Hence, by applying the
present theory to problems such as the local buckling of beams and the torsional and
torsional-flexural bucklings of columns and bean -columns, the behavior of local deformations
should be clear.
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